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Abstract
We study the problem of correspondence between classical and quantum
statistical models. We show that (contrary to a rather common opinion) it
is possible to construct a natural pre-quantum classical statistical model. The
crucial point is that such a pre-quantum classical statistical model is not the
conventional classical statistical mechanics on the phase space R2n, but its
infinite-dimensional analogue. Here the phase space � = H × H , where H is
the (real separable) Hilbert space. The classical → quantum correspondence
is based on the Taylor expansion of classical physical variables—maps
f : � → R. The space of classical statistical states consists of Gaussian
measures on � having zero mean value and dispersion ≈h. The quantum
statistical model is obtained as the limh→0 of the classical one. All quantum
states including so-called ‘pure states’ (wavefunctions) are simply Gaussian
fluctuations of the ‘vacuum field’, ω = 0 ∈ �, having dispersions of the
Planck magnitude.

PACS number: 03.65.Ta

1. Introduction

Since the first days of the creation of quantum mechanics, physicists, mathematicians and
philosophers are involved in stormy debates on the possibility of creating a classical pre-
quantum statistical model; see, for example, [1–44]. Here ‘classical statistical’ has the
meaning of a realistic model, in which physical variables can be considered as objective
properties and probabilities can be described by the classical (Kolmogorov) measure-theoretic
model. There is a rather common opinion that it is impossible to construct such a pre-quantum
model. Such an opinion is a consequence of Bohr’s belief that quantum mechanics is a
complete theory. Therefore it is, in principle, impossible to create a deeper description of
physical reality. In particular, there is a rather common belief that quantum randomness is
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irreducible; see, e.g., [4] (in contrast to classical randomness which is reducible in the sense
that it can be reduced to ensemble randomness of objective properties). There is much activity
in proving various mathematical ‘no-go’ theorems (e.g., von Neumann1, Kochen–Specker,
Bell, and others). Many people think that with the aid of such mathematical investigations it
is possible to prove completeness of quantum mechanics. As was pointed out in the preface
to the conference proceedings [36], such an approach cannot be justified, because we do not
know the correspondence rules between pre-quantum and quantum models.

J von Neumann presented in his book [4] a list of possible features of such a classical →
quantum map T. Later this list was strongly criticized by many authors (including J Bell) [12].
In particular, there was criticism on the assumption of one-to-one correspondence between
the set of classical physical variables V and the set of quantum observables O. There it was
also pointed out that von Neumann’s assumption that T (a + b) = T (a) + T (b) for any two
physical variables (without the assumption that observables T (a) and T (b) can be measured
simultaneously) is non-physical. Then different authors proposed their own lists of possible
features of the map T which (as they think) are natural. These lists (including Bell’s list) were
again criticized; see, e.g., [26, 27–29, 37, 40, 41, 44] and some papers in [33–36].

In [45] I proposed to start the activity in the opposite direction. Instead of looking for
lists of assumptions on the classical → quantum map T which would imply a new ‘no-go’
theorem, it seems more natural to try to find such lists of features of T which would give the
possibility of creating a natural pre-quantum classical statistical model. In these papers, it
was shown that all distinguishing features of the quantum probabilistic model (interference of
probabilities, Born’s rule, complex probabilistic amplitudes, Hilbert state space, representation
of observables by operators) are present in a latent form in the classical Kolmogorov probability
model.

The approach developed in [45] has a few weak sides. A pure mathematical problem
is that this approach was developed only for discrete observables. We also pay attention to
two fundamental physical problems which are in fact closely coupled: (a) the framework of
[45] does not give the possibility of selecting the ‘right’ (from the physical point of view) pre-
quantum model among all possible (from the mathematical point of view) Kolmogorov models,
because in papers [45] QM is considered as purely mathematical probabilistic formalism which
is characterized by contextuality of probabilities (so there was nothing new about physical
laws, but just about mathematical laws for transformations of probabilities depending on
contexts); (b) the role of the Planck constant h in classical → quantum correspondence was
not clear; see [46] for debates2.

In this paper, we construct a physically adequate pre-quantum classical statistical model.
The crucial point is that the pre-quantum classical statistical model is not the conventional
classical statistical mechanics on the phase space R2n, but its infinite-dimensional analogue.
Here the phase space � = H × H , where H is the (real separable) Hilbert space. The
classical → quantum correspondence is based on the Taylor expansion of classical physical
variables—maps f : � → R. The space of classical statistical states consists of Gaussian
measures on � having zero mean value and dispersion ≈h. The quantum statistical model
is obtained as the limh→0 of the classical one. All quantum states including so-called ‘pure

1 Recently A Leggett brought to my attention the fact that J von Neumann did not consider his considerations as a
rigorous mathematical theorem. In the original German addition (1933) of his book he called ‘no-go’ considerations
ansatz and not theorem.
2 In the conventional approaches, there is typically considered quantum → classical correspondence; see, e.g.,
[47–50]. In particular, in the formalism of deformation quantization classical mechanics on the phase space � = R2n

is obtained as the limh→0 of quantum mechanics. Contrary to the conventional approaches, we consider classical →
quantum correspondence.
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states’ (wavefunctions) are simply Gaussian fluctuations of the ‘vacuum field’, ω = 0 ∈ �,
having dispersions of the Planck magnitude.

It is especially interesting that in our approach ‘pure quantum states’ are not pure at
all. These are also statistical mixtures of small Gaussian fluctuations of the ‘vacuum field’.
It seems that the commonly supported postulate (see, e.g., [4]) about irreducible quantum
randomness, i.e., randomness which could not be reduced to classical ensemble randomness,
was not justified.

We shall discuss a possible physical interpretation of our model and its relation to other
realistic pre-quantum models in section 9: the pilot wave model (Bohmian mechanics), see
e.g. [7, 11, 19], stochastic QM (in particular, SED), see e.g. [18, 51, 52] and references therein.
Briefly, we can say that elementary particles, such as photons or electrons, are not present in
our pre-quantum realistic model. Physical reality is reality of ‘classical fields’—systems with
the infinite number of degrees of freedom (so we consider a field model, but this is not QFT,
because quantum mechanics is reproduced not through quantum fields, but classical fields).
Images of quantum particles are created in the processes of measurements performed on
classical fields. The main distinguishing feature of classical pre-quantum fields is very small
magnitudes. Here smallness is understood as statistical smallness. We are able to prepare for
quantum measurements statistical states (measures on the space of classical fields) having zero
mean value and dispersion of the Planck magnitude. In such a statistical ensemble (of classical
fields) deviations of fields from the vacuum field are of the magnitude σ(ρ) = √

h. Quantum
mechanics is not complete, because our ontic model (describing reality as it is) contains
even statistical states describing statistical deviations of the magnitude σ(ρ) = o(

√
h). Such

statistical states are neglected in the process of classical → quantum correspondence. QM
does not contain images of these states.

Of course, this paper is just the first step in representing QM as an asymptotic projection
of statistical mechanics of classical fields. At the moment, it is too early to discuss possible
impact of the presented ‘pre-quantum model’. I would not say that the well-known problem
of hidden variables is solved. Our pre-quantum model is rather far from original expectations;
cf, e.g., with investigations of von Neumann and Bell. The crucial difference is that in
conventional models with hidden variables there was assumed coincidence of quantum and
classical averages, but in our approach they coincide only asymptotically, so this is an
asymptotic hidden variables model. Another important problem for further investigations
is the study of composite systems and, in particular, an interpretation of Bell’s inequality in
such a framework. This is the difficult problem and some deviations from QM might be
expected.

2. On classical → quantum correspondence

2.1. Ontic and epistemic models

We show that (contrary to the very common opinion) it is possible to construct a pre-quantum
classical statistical model. From the very beginning, we should understand that pre-quantum
and quantum models give us two different levels of description of physical reality. By using
the terminology of Scheibe, Primas and Atmanspacher (see, e.g., [37]) we can say that pre-
quantum and quantum models provide, respectively, ontic and epistemic descriptions. The
first describes nature as it is (as it is ‘when nobody looks’). The second is an observational
model. It gives an image of nature through a special collection of observables.

In any ontic (‘realistic’) model the following sets are given: (a) �—states; (b) V (�)—
physical variables. Elements of V (�) describe objective properties. In general, it is not
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assumed that they can be measured. In a statistical ontic model, statistical states are also
considered; these are distributions of states. Thus an ontic statistical model is a couple
M = (S(�), V (�)), where S(�) is a set of statistical states of a model.

In any epistemic (‘observational’) statistical model there are given sets of observables
and statistical states: O and D. An epistemic (‘observational’) statistical model is a couple
N = (D,O). Elements of the set O do not describe objective properties; they describe
results of observations. Statistical states represent distributions of states ω ∈ �.3 In general
(‘individual states’) ω do not belong to the domain of an epistemic model N = (D,O)

(because observers using this model in general are not able to prepare ‘individual states’ ω).
The set of states D of N need not contain images of δω measures concentrated at points ω ∈ �.

Of course, in physics some epistemic statistical models are used which describe even
‘individual states’ (belonging to the domain of the corresponding ontic model). Here all
measures δω, ω ∈ �, belong to the set of statistical states D. However, in such a case one need
not distinguish ontic and epistemic levels of description.

For example, we can consider classical statistical mechanics. Here states are given by
points ω = (q, p) of the phase space � = R2n and statistical states by probability distributions
on �. States ω ∈ � can be represented by statistical states—δω measures on the phase space.

In the present paper, we are not interested in such statistical models. We are interested in
epistemic models which do not provide the description of ‘individual states’. In such a case δω

measures are not represented by statistical states of an epistemic model: D does not contain
T (δω), where T is a map performing correspondence between the ontic (pre-observational)
model M and the epistemic (observational) model N.

We now discuss mathematical representations of ontic and epistemic models.

2.2. Classical statistical models

Of course, there are many ways to proceed mathematically both on the ontic and epistemic
levels of description of nature. But traditionally ontic models are represented as ‘classical
statistical models’:

(a) Physical states ω are represented by points of some set � (state space).
(b) Physical variables are represented by functions f : � → R belonging to some functional

space V ≡ V (�).4

(c) Statistical states are represented by probability measures on � belonging to some class
S ≡ S(�).5

(d) The average of a physical variable (which is represented by a function f ∈ V (�)) with
respect to a statistical state (which is represented by a probability measure ρ ∈ S(�)) is
given by

〈f 〉ρ ≡
∫

�

f (ω) dρ(ω). (1)

A classical statistical model is a couple M = (S, V ).
We recall that classical statistical mechanics on the phase space R2n gives an example

of a classical statistical model. But we shall not be interested in this example in our further
considerations. We shall use a classical statistical model with an infinite-dimensional phase
space.

3 Our considerations are based on the realistic approach to the description of physical reality.
4 The choice of a concrete functional space V (�) depends on various physical and mathematical factors.
5 It is assumed that there is given a fixed σ field of subsets of � denoted by F. Probabilities are defined on F, see [53],
1933. It is, of course, assumed that physical variables are represented by random variables—measurable functions.
The choice of a concrete space of probability measures S(�) depends on various physical and mathematical factors.
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Remark 2.1. We emphasize that the space of variables V (�) need not coincide with the space
of all random variables RV (�)—measurable functions ξ : � → R. For example, if � is
a differentiable manifold, it is natural to choose V (�) consisting of smooth functions; if �

is an analytic manifold, it is natural to choose V (�) consisting of analytic functions and so
on. Denote the space of all probability measures on the σ field � by the symbol PM(�).
The space of statistical states S(�) need not coincide with PM(�). For example, for some
statistical model S(�) may consist of Gaussian measures.

We shall be interested in ontic models (which are mathematically represented as classical
statistical models) inducing the quantum epistemic (observational) statistical model Nquant.

2.3. The quantum statistical model

In the Dirac–von Neumann formalism [2, 4] in the complex Hilbert space Hc this model is
described in the following way:

(a) Physical observables are represented by operators A : Hc → Hc belonging to the class
of continuous6 self-adjoint operators Ls ≡ Ls(Hc) (so O is mathematically represented
by Ls).

(b) Statistical states are represented by density operators, see [4]. The class of such operators
is denoted by D ≡ D(Hc) (so D is mathematically represented by D).

(c) The average of a physical observable (which is represented by the operator A ∈ Ls(Hc))
with respect to a statistical state (which is represented by the density operator D ∈ D(Hc))

is given by von Neumann’s formula:

〈A〉D ≡ Tr DA. (2)

The quantum statistical model is the couple Nquant = (D(Hc),Ls(Hc)).

Sometimes pure quantum states given by normalized vectors ψ ∈ Hc are also considered.
We shall not do this, because ‘pure states’ of conventional quantum mechanics do not coincide
with ontic states of our model. We shall see that pure states are in fact not pure at all. They
are statistical mixtures of Gaussian fluctuations of ontic (‘individual’) states. We just recall
that many authors (see, e.g., [28]) define the quantum model in the same way, i.e., without
considering pure quantum states.

2.4. Postulates of classical → quantum correspondence

As was already pointed out, we are looking for a classical statistical model M = (S(�), V (�))

inducing the quantum statistical model Nquant = (D(Hc),Ls(Hc)). The main problem is that
the meaning of the term ‘inducing’ was not specified!7 For example, one may postulate (see,
e.g., [4], p 313) that

Postulate VO. There is one-to-one correspondence between the space of variables V (�)

and the space of observables Ls(Hc).

In such a case one could define a one-to-one map:

T : V (�) → Ls(Hc). (3)
6 To simplify considerations, we shall consider only quantum observables represented by bounded operators. To
obtain the general quantum model with observables represented by unbounded operators, we should consider a
pre-quantum classical statistical model based on the Gelfand triple: H +

c ⊂ Hc ⊂ H−
c .

7 We emphasize that one can consider epistemic models without any relation to ontic models. Moreover, one can
even assume (as it is commonly done in quantum mechanics) that an underlying ontic model cannot be constructed
even in principle. However, we stay on the realist position and suppose that any epistemic model is induced by some
ontic model.
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One can also postulate that (see, e.g., [4] pp 301–5)

Postulate SS. Each quantum statistical state D ∈ D corresponds to a classical statistical
state ρ ∈ S.

Thus there is given a map

T : S(�) → D(Hc). (4)

Moreover, the following is often postulated (see, e.g., the theorem of Kochen and Specker
[14]; in von Neumann book [4] it can be derived from equality (Dis2), p 313):

Postulate F. Let φ : R → R be a Borel function such that, for any variable f ∈ V, φ(f ) ∈ V .
Then T (φ(f )) = φ(T (f )).

Both models under consideration—a classical model (which we are looking for) and the
quantum model Nquant—are statistical; the final outputs of both models are averages: 〈f 〉ρ
and 〈A〉D, which are defined by (1) and (2), respectively. One could postulate (see, e.g., [4],
p 301) that

Postulate AVC. Classical and quantum averages coincide.

In such a case one has

〈f 〉ρ = 〈A〉D, A = T (f ), D = T (ρ). (5)

Thus ∫
�

f (ω) dρ(ω) = Tr DA, A = T (f ), D = T (ρ). (6)

As was mentioned, these postulates were considered, in particular, by von Neumann.
Finally, he also postulated that

Postulate AD. The correspondence map T is additive,

T (f1 + · · · + fn + · · ·) = T (f1) + · · · + T (fn) + · · · , (7)

for any sequence of variables f1, . . . , fn, . . . ∈ V (�).8

Already in the 1930s von Neumann demonstrated that a correspondence map T satisfying
postulates VO, SS, F, AVC, AD does not exist [4]. Bell [12] paid attention to the fact that not
all von Neumann’s postulates were physically justified. He (and not only he, see Ballentine
[15, 29] for details) strongly criticized postulate AD as totally non-physical [12]. Bell also
strongly criticized postulate VO. He pointed out that it might happen that a few different
physical variables are mapped into the same physical observable. He proposed to eliminate
postulates VO, AD and even consider, instead of the postulate F, a weaker condition:

Postulate RVC. Ranges of values of a variable f ∈ V and the corresponding quantum
observable A = T (f ) coincide.

Then he proved [12] that there is still no such correspondence map T. Nevertheless, let us
suppose that a pre-quantum ontic model exists. It is natural to ask the following questions:

‘Which postulate does block the construction of the correspondence map T ? Which
postulate is really non-physical?’

8 It is important to remark that von Neumann did not assume that observables T (f1), . . . , T (fn), . . . could be
measured simultaneously!
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2.5. On correspondence between ranges of values of classical
variables and quantum observables

We emphasize that physical variables f ∈ V and observables F ∈ O are defined on different
sets of parameters and therefore they could have different ranges of values, see [54] for a
detailed analysis of this problem. In general, a measurement process induces some loss of
information about the (ontic) state ω.9 Therefore an observable is only an approximation of a
physical variable. It seems that postulate RVC is non-physical (and consequently its stronger
form—postulate F).

We shall show that it is possible to construct a very natural (from the physical viewpoint)
classical statistical model such that it is mapped onto the quantum model with a map T which
satisfies postulates VO, SS, AVC and even postulate AD (which has been so often criticized).
We pay attention to the fact that if the space of physical variables V (�) is an R-linear space
then postulate AD can be written as

Postulate RL. The correspondence map T : V (�) → Ls(Hc) is R-linear.

Thus we solved the mathematical problem of constructing a pre-quantum classical
statistical model and the correspondence map T having natural properties, see section 3. This
is the end of the very long mathematical story about the existence of a pre-quantum classical
statistical model. But the physical analysis of the problem of correspondence between classical
statistical mechanics and quantum mechanics should be continued.

2.6. The role of the Planck constant in classical → quantum correspondence

Our analysis demonstrated, see sections 5 and 6, that the mathematical construction based
on the precise equality of classical and quantum averages, see postulate AVC, (5), (6), looks
rather restrictive in the physical framework. We proceed with a new classical statistical model
having a larger class of physical variables. Here the fundamental equality (5) is violated, but
it seems that this corresponds to the real physical situation. Postulate VO is also violated (the
map T is still onto Ls, but it is not one-to-one anymore). The crucial point is that, instead of
(5), in a new model we have only

〈f 〉ρ = 〈T (f )〉T (ρ) + o(h), h → 0, (8)

where h is the Planck constant10. In mathematical models, this equality has the form∫
�

f (ω) dρ(ω) = Tr DA + o(h), A = T (f ), D = T (ρ). (9)

We claim that
The quantum statistical theory is the result of neglecting o(h)-terms in classical (pre-

quantum) averages.
Considering the quantum model as the limh→0 of a classical model is a rather unusual

viewpoint to the relation between ‘classical’ and ‘quantum’. It is really inverse to
the conventional viewpoint (which is presented mathematically in so-called deformation
quantization, see, e.g., [47] and [48–50]). In the conventional approach, the classical
phase space mechanics can be obtained as limh→0 of the quantum mechanics. To escape
misunderstanding, we should explain this point in more detail. One should sharply distinguish
two classical statistical models:
9 In fact, quantum measurements induce huge loss of information in the process of extracting information about
properties of microscopic structures with the aid of macroscopic measurement devices.
10 In mathematical considerations h is not a constant, but a small parameter and o(h) is defined by limh→0

o(h)
h

= 0.
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(1) Classical statistical mechanics on the ‘classical phase space’ � = R3 × R3.
(2) The pre-quantum classical statistical model.

In our approach, the latter model is based on an infinite-dimensional phase space �.
To distinguish statistical and dynamical problems, in this paper we shall consider the case

of the real Hilbert space H. Thus in all the above considerations the complex Hilbert space Hc

should be changed to the real Hilbert space H. In particular, Ls ≡ Ls(H), D ≡ D(H), and so
on. The case of the complex Hilbert state space will be considered in the next paper.

3. Gaussian measures on Hilbert spaces

Let H be a real Hilbert space and let A : H → H be a continuous self-adjoint linear operator.
The basic mathematical formula which will be used in this paper is the formula for a Gaussian
integral of a quadratic form

f (x) ≡ fA(x) = (Ax, x). (10)

Let dρ(x) be a σ -additive Gaussian measure on the σ field F of Borel subsets of H. This
measure is determined by its covariation operator B : H → H and mean value m ≡ mρ ∈ H .
For example, B and m determine the Fourier transform of ρ:

ρ̃(y) =
∫

H

ei(y,x) dρ(x) = e
1
2 (By,y)+i(m,y), y ∈ H.

In what follows, we restrict our considerations to Gaussian measures with zero mean value
m = 0, where

(m, y) =
∫

H

(y, x) dρ(x) = 0

for any y ∈ H . Sometimes the symbol ρB will be used to denote the Gaussian measure with
the covariation operator B and m = 0. We recall that the covariation operator B ≡ cov ρ is
defined by

(By1, y2) =
∫

(y1, x)(y2, x) dρ(x), y1, y2 ∈ H, (11)

and has the following properties:

(a) B � 0, i.e., (By, y) � 0, y ∈ H .
(b) B is a self-adjoint operator, B ∈ Ls(H).
(c) B is a trace-class operator and

Tr B =
∫

H

‖x‖2 dρ(x). (12)

The right-hand side of (12) defines dispersion of the probability ρ. Thus for a Gaussian
probability we have

σ 2(ρ) = Tr B. (13)

We pay attention to the fact that the list of properties of the covariation operator of a
Gaussian measure differs from the list of properties of a von Neumann density operator only
by one condition: Tr D = 1, for a density operator D.
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By using (11) we can easily find the Gaussian integral of the quadratic form fA(x) defined
by (10),∫

H

fA(x) dρ(x) =
∫

H

(Ax, x) dρ(x) =
∞∑

i,j=1

(Aei, ej )

∫
H

(ei, x)(ej , x) dρ(x)

=
∞∑

i,j=1

(Aei, ej )(Bei, ej ),

where {ei} is some orthonormal basis in H. Thus∫
H

fA(x) dρ(x) = Tr BA. (14)

We have presented some facts about Gaussian measures on Hilbert space; there many
books where one can find detailed presentation; I would like to recommend an excellent short
book of A V Skorohod [55], see also [56–59] for applications to mathematical physics.

4. The classical statistical model on the real Hilbert space
inducing the quantum model

4.1. The classical model with Gaussian statistical states

Let us consider classical physical systems which have H as the state space, so � = H .
Ensembles of such systems are described by probability measures (statistical states) on the
σ field of Borel subsets F. We consider a classical statistical model such that the class of
statistical states consists of Gaussian measures ρ on H having zero mean value, mρ = 0, and
unit dispersion

σ 2(ρ) =
∫

H

‖x‖2 dρ(x) = 1.

These are Gaussian measures having covariance operators with the unit trace, see equality
(13). Denote the class of such probabilities by the symbol SG ≡ SG(H). In our model, the
class of physical variables consists of quadratic forms fA(x), see (10). We denote this class by
Vquad ≡ Vquad(H). We remark that this is a linear space (over R). We consider the following
classical statistical model:

Mquad = (SG(H), Vquad(H)).

As always in a statistical model, we are interested only in averages of physical variables
f ∈ Vquad(H) with respect to statistical states ρ ∈ SG(H). Here we have

〈f 〉ρ =
∫

H

f (x) dρ(x). (15)

We emphasize that by (14)

〈f 〉ρ = Tr BA for f ≡ fA. (16)

4.2. The correspondence map

Let us consider the following map T from the classical statistical model Mquad =
(SG(H), Vquad(H)) to the quantum statistical model Nquant = (D(H),Ls(H)):

T : SG(H) → D(H), T (ρ) = cov ρ (17)
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(the Gaussian measure ρB is represented by the density matrix D which is equal to the
covariation operator of this measure), and we define

T : Vquad(H) → Ls(H), T (f ) = 1
2f ′′(0) (18)

(thus a variable f ∈ Vquad(H) is represented by its second derivative). In principle, one could
choose normalization constants in an arbitrary way: T (ρ) = α cov ρ, T (f ) = βf ′′(0),

αβ = 1/2 (at least in a purely mathematical considerations)11.

4.3. Differentiable and analytic functions

The differential calculus for maps f : H → R does not differ so much from the differential
calculus in the finite-dimensional case, f : Rn → R. Instead of the norm on Rn, one should
use the norm on H. We consider the so-called Frechet differentiability [56]. Here a function f
is differentiable if it can be represented as

f (x0 + �x) = f (x0) + f ′(x0)(�x) + o(�x), where lim
‖�x‖→0

‖o(�x)‖
‖�x‖ = 0.

Here the derivative f ′(x) is a continuous linear functional on H ; so it can be identified with
the element f ′(x) ∈ H . Then we can define the second derivative as the derivative of the map
x → f ′(x) and so on. A map f is differentiable n-times iff (see, e.g., [56])

f (x0 + �x) = f (x0) + f ′(x0)(�x) +
1

2
f ′′(x0)(�x,�x) + · · ·

+
1

n!
f (n)(x0)(�x, . . . ,�x) + on(�x), (19)

where f (n)(x0) is a symmetric continuous n-linear form on H and

lim
‖�x‖→0

‖on(�x)‖
‖�x‖n

= 0.

For us it is important that f ′′(x0) can be represented by a symmetric operator

f ′′(x0)(u, v) = (f ′′(x0)u, v), u, v ∈ H

(this fact is well known in the finite-dimensional case: the matrix representing the second
derivative of any two times differentiable function f : Rn → R is symmetric). In (18) this
operator was considered for the particular choice x0 = 0. We remark that in this case

f (x) = f (0) + f ′(0)(x) +
1

2
f ′′(0)(x, x) + · · · +

1

n!
f (n)(0)(x, . . . , x) + on(x). (20)

We recall that a function f : H → R is (real) analytic if it can be expanded into series

f (x) = f (0) + f ′(0)(x) +
1

2
f ′′(0)(x, x) + · · · +

1

n!
f (n)(0)(x, . . . , x) + · · · (21)

which converges uniformly on any ball of H, see [60] for details.

4.4. The fundamental theorem on classical → quantum correspondence

Theorem 4.1. The map T defined by (17), (18) is one-to-one on the spaces of statistical states
and physical variables, SG(H) and Vquad(H)); the map T : Vquad(H) → Ls(H) is linear and
the equality of classical and quantum averages (6) holds.

11 We shall see that in fact 2 = 2! is just the normalization coefficient for the second term in the Taylor expansion.
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Proof. The map (17) is one-to-one, because a Gaussian measure ρ (with mρ = 0) is uniquely
defined by its covariation operator. The map T : Vquad(H) → Ls(H) is one-to-one, since the
quadratic form x → f (x) is uniquely determined by its second derivative. It is linear, because
the operation of differentiation is linear. The fundamental equality (6) is a consequence of the
equality (14) for Gaussian measures:∫

H

f (x) dρ(x) = 1

2

∫
H

(f ′′(0)x, x) dρ(x) = 1

2
Tr Bf ′′(0). (22)

�

Thus von Neumann postulates VO, SS, AVC hold as well as postulate RL. The
latter implies that even postulate AD holds for a finite number of physical variables
f1, . . . , fn ∈ Vquad(H). We recall that von Neumann used this postulate for an infinite
number of physical variables (this is crucial in his ‘no-go’ considerations). We consider the
mathematical formulation of postulate AD for infinitely many variables in the appendix.

5. The observation process and loss of information

5.1. Measurements on systems with the infinite number of degrees of freedom

Our theory describes the following physical situation. There is an infinite-dimensional space
of classical states � = H ; in principle, it can be interpreted as the space of classical fields.
Statistical states are represented by a special class of Gaussian distributions on the space of
fields. Physical variables are quadratic forms of fields. Physical variables depend on the
infinite number of degrees of freedom:

f = f (x1, . . . , xn, . . .)

We measure such quantities by using some macroscopic measurement apparatuses. We could
not even in principle extract information about an infinite number of variables. There is no
hope to reproduce exactly the ontic quantity. For example, huge disturbances can be produced
by macroscopic measurement devices. But I am not sure that it is really the point. It seems the
point is that a measurement which is performed during a finite interval of time could not give
us complete information about an infinite number of variables determining the ontic physical
variable. In particular, there is no reason to expect that the range of values of a variable
f (x) would coincide with the range of values of the corresponding observable T (f ). In our
approach, postulate RVC (and its stronger form—postulate F) are not physical. On the other
hand, the von Neumann postulate AD (which was so strongly criticized by many authors, see
the introduction) does not induce any problem. The situation with the von Neumann postulate
VO is more complicated. As we have seen, theorem 4.1, it is possible to create a pre-quantum
model in that this postulate is not violated. However, in a more general (and natural from the
physical viewpoint) model, see section 6, this postulate is violated.

The only thing that one can expect from an adequate observational model is coincidence
(in fact, only with some precision, but see section 6 for details) of ontic and observational
averages. And we have this in our approach; see theorem 4.1, equality (22).

The classical statistical model Mquad = (SG, Vquad) naturally induces the statistical
observational model Nquant = (D,Ls). As was already pointed out, this construction can
be considered as the end of the long story about the possibility of finding a pre-quantum
classical statistical model. It was commonly believed that such a pre-quantum model does
not exist at all. Nevertheless, we demonstrated that it exists. This induces new interesting
questions:
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(a) Why does the space of classical statistical states consist of Gaussian measures?
(b) Why does the space of classical physical variables consist of quadratic forms?
(c) What is the role of the Planck constant h in our approach?

5.2. The statistical origin of Gaussian pre-quantum states

The choice of Gaussian probability distributions as statistical states is natural from the
probabilistic viewpoint. By the central limit theorem (which is also valid for H-valued
random variables, see [61]) a Gaussian probability distribution appears as the integral effect
of infinitely many independent random influences. Of course, it is important that in our case
each random influence is given by a random variable ξ(ω) ∈ H . Thus we consider the infinite
number of degrees of freedom. A Gaussian distribution ρ is the integral result of influences
of infinitely many such ξ . But from the purely measure-theoretical viewpoint there is not so
much difference between the origin of Gaussian probability distribution on H and Rn.

The explanation of consideration of quadratic functions on the state space is a complicated
problem which will be discussed in more detail in section 6.12

5.3. On the role of the Planck constant

Another problem is the absence of the quantum h in our framework. Many authors would
not consider this as a problem. It is often assumed that h = 1. However, the Planck
constant h (considered as a small parameter) is extremely important in so-called deformation
quantization, see e.g. [47–50] and, in particular, in establishing the correspondence principle
between quantum and classical models [47–50]. The ordinary classical mechanics on the
phase space R3 × R3 is obtained as the limit h → 0 of quantum mechanics formulated with
the aid of the calculus of pseudo-differential operators. The ideas of deformation quantization
are important for us. However, they will be used in a very perverse form: We shall see that
the quantum observational model Nquant = (D,Ls) is limh→0 of a classical statistical model
on the space of microstates H (the new model will extend the model Mquad = (SG, Vquad)).

5.4. Second quantization

Finally, we emphasize again that in fact there are two classical statistical models: ordinary
classical statistical mechanics (CSM) on the phase space R3 × R3 and classical statistical
mechanics on the infinite-dimensional Hilbert space H. It is well known that the latter classical
mechanics can be quantized again. This is the procedure of second quantization. This
procedure gives nothing else than operator quantization approach to QFT; see, e.g., [62].
There the principle of correspondence between classical and quantum models for systems
with the infinite number of degrees of freedom can also be established. The easiest way
do to this is to repeat Weyl’s considerations and use the calculus of infinite-dimensional
pseudo-differential operators (PDO). Such a calculus was developed on the physical level of
rigorousness in [62] and on the mathematical level of rigorousness by Smolyanov and the
author [63, 60]; finally, the principle of correspondence was proved [64]. But in this paper
we are not interested in QFT. We only remark that methods developed in this paper can be
generalized to QFT which can also be presented as the T projection of a classical statistical
model.

12 Of course, we can present a simple, but very important motivation. Such a choice of the space of classical physical
variables is justified because it works well and induces the von Neumann trace rule for averages on the level of the
observational model.
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6. To the quantum model through neglecting o(h)-terms in the
classical model with infinite-dimensional state space

6.1. The classical model with analytic physical variables

Let us consider another (more physically justified) classical statistical model in that � = H,

but the class of statistical states consists of Gaussian measures with zero mean value and
dispersion

σ 2(ρ) =
∫

H

‖x‖2 dρ(x) = h, (23)

where h > 0 is a small real parameter. Denote such a class by the symbol Sh
G(H). For

ρ ∈ Sh
G(H), we have

Tr cov ρ = h. (24)

Let h > 0 be a constant. We have for any Gaussian measure ρB

〈f 〉ρB
=

∫
H

f (x) dρB(x) =
∫

H

f (
√

hy) dρD(y).

We did the change of variables (scaling),

y = x√
h

. (25)

We remark that any linear transformation (in particular, scaling) preserves the class of Gaussian
measures. To find the covariation operator D of a new Gaussian measure ρD , we compute its
Fourier transform:

ρ̃D(ξ) =
∫

H

ei(ξ,y) dρD(y) =
∫

H

ei(ξ, x√
h
) dρB(x) = e− 1

2h
(Bξ,ξ).

Thus

D = B

h
= cov ρ

h
. (26)

We shall use this formula later.
Let us consider a functional space V(H) which consists of analytic functions of

exponential growth preserving the state of vacuum:

f (0) = 0 and there exist C, α � 0 : |f (x)| � C eα‖x‖.

We remark that any function f ∈ V(H) is integrable with respect to any Gaussian measure on
H; see, e.g., [55, 56]. Let us consider the classical statistical model

Mh
a = (

Sh
G(H),V(H)

)
.

6.2. Asymptotic expansion of classical averages

Let us find the average of a variable f ∈ V(H) with respect to a statistical state ρB ∈ Sh
G(H):

〈f 〉ρB
=

∫
H

f (x) dρB(x) =
∫

H

f (
√

hy) dρD(y) =
∞∑

n=2

hn/2

n!

∫
H

f (n)(0)(y, . . . , y) dρD(y),

(27)

where the covariation operator D is given by (26). We remark that∫
H

(f ′(0), y) dρ(y) = 0,
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because the mean value of ρ is equal to zero. Since ρB ∈ Sh
G(H), we have

Tr D = 1. (28)

The change of variables in (27) can be considered as rescaling of the magnitude of statistical
(Gaussian) fluctuations. Fluctuations which were considered as very small,

σ(ρ) =
√

h, (29)

(where h is a small parameter) are considered in the new scale as standard normal fluctuations.
By (27) we have

〈f 〉ρ = h

2

∫
H

(f ′′(0)y, y) dρD(y) + o(h), h → 0, (30)

or

〈f 〉ρ = h

2
Tr Df ′′(0) + o(h), h → 0. (31)

We see that the classical average (computed in the model Mh
a = (Sh

G(H),V(H)) by using
measure-theoretic approach) is approximately equal to the quantum average (computed in the
model Nquant = (D(H),Ls(H)) by the von Neumann trace formula).

6.3. Classical → quantum correspondence

The equality (31) can be used as the motivation for defining the following classical → quantum
map T from the classical statistical model Mh

a = (
Sh

G,V
)

to the quantum statistical model
Nquant = (D,Ls),

T : Sh
G(H) → D(H), D = T (ρ) = cov ρ

h
(32)

(the Gaussian measure ρ is represented by the density matrix D which is equal to the covariation
operator of this measure normalized by the Planck constant h):

T : V(H) → Ls(H), Aquant = T (f ) = h

2
f ′′(0). (33)

Our previous considerations can be presented as

Theorem 6.1. The map T defined by (32) and (33) is one-to-one on the space of statistical
states Sh

G(H); the map T : V(H) → Ls(H) is linear and the classical and quantum averages
are asymptotically, h → 0, equal; see (31).

However, contrary to the model Mquad = (SG(H), Vquad(H)), the correspondence between
physical variables f ∈ V(H) and physical observables A ∈ Ls(H) is not one-to-one13.

13 A large class of physical variables is mapped into one physical observable. We can say that the quantum
observational model Nquant does not distinguish physical variables of the classical statistical model Mh

a . The space
V(H) is split into equivalence classes of physical variables: f ∼ g ↔ f ′′(0) = g′′(0). Each equivalence class W is
characterized by a continuous self-adjoint operator Aquant = h

2 f ′′(0), where f is a representative of physical variables
from the class W. The restriction of the map T on the space of quadratic observables Vquad(H) is one-to-one. Of
course, the set of variables V(H) can be essentially extended (in particular, we can consider smooth functions on the
Hilbert space, instead of analytic functions). However, we emphasize that such an extension would have no effect to
the quantum observational model.
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6.4. Physical conclusions

Our approach is based on considering the Planck constant h as a small parameter. Let
us consider some classical statistical model M = (S, V ) and an observational model
N = (D,O). Suppose that in this observational model quantities of the magnitude � h

could not be observed. Therefore, for an observable A ∈ O, its average can be calculated only
up to the magnitude h. On the other hand, in the classical statistical model M average contains
even terms of the magnitude o(h). Such terms are neglected in the correspondence between M
and N. We just formalized this procedure by considering mathematical models Mh

a = (
Sh

G,V
)

and Nquant = (D,Ls).
In the observational model, we neglect terms of the magnitude o(h) in all statistical

averages. This is our understanding of quantization.

6.4.1. Conclusion. Quantum mechanics is an approximative statistical description of nature
based on extracting quantities of the magnitude h and neglecting quantities of the magnitude
o(h).

6.5. On the statistical meaning of the Planck constant

The approach based on the scaling of statistical states has some interesting physical
consequences. The space Sh

G(H) of statistical states of the pre-quantum classical model
consists of Gaussian distributions with zero mean value and dispersion of the magnitude h. If
h is very small, then such a ρ is concentrated in a very small neighbourhood of the state ω = 0.
Let us interpret ω = 0 as the state of vacuum14. Thus von Neumann density matrices represent
Gaussian statistical states (on the infinite-dimensional state space H) which are very narrow
concentrated around the vacuum state ω = 0. Such states can be considered as fluctuations
of vacuum, cf [18, 51, 52]. Therefore in our approach the Planck constant has only statistical
meaning—dispersion of fluctuations of vacuum.

Such a statistical viewpoint to the small parameter gives the possibility of applying
the quantum formalism in any statistical model (in any domain of science) which contains
statistical states having dispersion of the magnitude κ, where κ is some small parameter. It is
clear that such a model describes very fine effects. In a coarser approximation, such statistical
states would be considered as states with zero dispersion.

Finally, we pay attention to the (at least theoretic) possibility of constructing finer quantum
observational models for the pre-quantum classical statistical model by using some small
parameter

κ � h. (34)

7. Gaussian measures inducing pure quantum states: statistical
meaning of the wavefunction

We start with statistical interpretation of pure quantum states.

7.1. Gaussian underground

In QM a pure quantum state is given by a normalized vector ψ ∈ H : ‖ψ‖ = 1. The
corresponding statistical state is represented by the density operator:

Dψ = ψ ⊗ ψ. (35)

14 We remark that this is the classical vacuum field and not a vacuum state of QFT.
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In particular, the von Neumann’s trace formula for expectation has the form

Tr DψA = (Aψ,ψ). (36)

Let us consider the correspondence map T for statistical states for the classical statistical model
Mh

a = (
Sh

G,V
)
, see (32). It is evident that the pure quantum state ψ (i.e., the state with the

density operator Dψ ) is the image of the Gaussian statistical mixture ρψ of states ω ∈ H .
Here the measure ρψ has the covariation operator

Bψ = hDψ. (37)

Thus

(Bψy1, y2) =
∫

H

(y1, x)(y2, x) dρψ(x) = h(y1, ψ)(ψ, y2).

This implies that the Fourier transform of the measure ρψ has the form

ρ̃ψ(y) = e− h
2 (y,ψ)2

, y ∈ H.

This means that the measure ρψ is concentrated on the one-dimensional subspace

Hψ = {x ∈ H : x = sψ, s ∈ R}.
This is one-dimensional Gaussian distribution. It is very important to pay attention to the
following trivial mathematical fact:

Concentration on the one-dimensional subspace Hψ does not imply that the Gaussian
measure ρψ is a pure state of the Dirac-type δ-function on the classical state space � = H .

7.2. Ontic states and wavefunctions

In our ontic model, states are represented by vectors of the Hilbert space H. Since pure states
in QM are also represented by vectors of H, one might try to identify them. The important
difference is that any vector belonging to H represents an ontic state, but only normalized
vectors of H represent pure quantum states. However, this is not the crucial point. The crucial
point is that the von Neumann density operator Dψ = ψ ⊗ ψ has nothing to do with the ontic
state ψ , even in the case of ‖ψ‖ = 1. The density operator describes not an individual state,
but a Gaussian statistical ensemble of individual states. States in this ensemble can have (with
corresponding probabilities) any magnitude.

7.2.1. Conclusion. Quantum pure states ψ ∈ H, ‖ψ‖ = 1, represent Gaussian statistical
mixtures of classical states. Therefore, quantum randomness is ordinary Gaussian randomness
(so it is reducible to the classical ensemble randomness).

Dispersion of the Gaussian measure ρψ has the magnitude of the Planck constant h. Thus
ρψ is very narrow Gaussian distribution concentrated around the vacuum state ω = 0. Roughly
speaking, the whole quantum theory is about fluctuations of vacuum. But we recall that this
is a very approximative theory, because only terms of the magnitude h are taken into account.

8. Incompleteness of quantum mechanics

Assume that our classical statistical model provides the adequate description of physical
reality. This would imply that quantum mechanics is not complete—since it does not describe
‘individual states’ ω ∈ �. However, it seems that it is practically impossible to verify
this prediction experimentally, because it is impossible to prepare ‘pure ontic states’ ω for
microscopic systems. It is easier to prove that quantum mechanics is not complete even as a
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statistical model, namely that in nature there exist classical statistical states (different from δω

states) which have no image in the quantum model.
Let us start with ‘pure non-quantum states’. Let ψ ∈ H, but its norm need not be equal

to 1. Let us consider the corresponding Gaussian statistical state ρψ ; see (37). This state
represents the Gaussian distribution concentrated on the real line. We pay attention to the fact
that by scaling the vector ψ we obtain a completely different Gaussian distribution. The only
commonality between measures ρψ and ρλψ, λ ∈ R, is that they are concentrated on the same
real line. But they have different dispersions (and so shapes). In particular, it is impossible to
represent all scalings by the normalized vector ψ/‖ψ‖.

Suppose now that ‖ψ‖ = o(1), h → 0. In our mathematical model, there exist classical
statistical states ρψ with covariance matrices Bψ = hψ ⊗ ψ , see (37). However, the quantum
statistical model Nquant does not contain images of such states, because σ 2(ρ) = o(h).

In the same way we can consider any classical statistical state ρ having the dispersion
σ 2(ρ) such that

σ 2(ρ) = o(h). (38)

Thus if we consider a general classical statistical model Mgeneral containing all Gaussian
states with zero average (without any restriction to the magnitude of dispersion) then it could
not be mapped onto QM.

9. Interpretation and comparison with other realistic pre-quantum models

9.1. Ensemble interpretation

As was already pointed out in the introduction, basic elements of ontic reality (i.e., reality
independent from observations) are systems with the infinite number of degrees of freedom,
say ‘classical fields’. Statistical states which we are able to prepare in laboratories and which
correspond to statistical states described by quantum mechanics are Gaussian distributions
of such fields. The mean value of these Gaussian fluctuations is the vacuum field, ω = 0.
Statistical deviations from the vacuum field

σ(ρ) =
√∫

L2(Rn,dx)

( ∫
Rn

|ψ(x)|2 dx
)

dρ(ψ) =
√

h

(here H = L2(Rn, dx) is the space of square integrable functions with respect to the Lebesgue
measure on Rn). Dynamics is given by Gaussian processes ξ(t, λ) with values in the Hilbert
space; here λ is a chance parameter. Thus if at the moment t0 an ensemble of fields was
described by a random variable ξ0(λ) ∈ H, then at the moment t we obtain an ensemble of
fields described by the random variable ξ(t, λ) ∈ H . A Gaussian random variable can take
any value ξ ∈ H . There is no restriction on the magnitude of ξ(t, ω) : ‖ξ(t, λ)‖ ∈ [0, +∞).
In particular, there is no normalization of states by 1. By using the language of stochastic
processes we write

Eξ(t) = 0, σ (ξ(t)) =
√

h.

We use the ensemble (or statistical) interpretation of quantum states, since they are images,
D = T (ρ), of Gaussian statistical states. The only difference from the conventional ensemble
(or statistical) interpretation of quantum mechanics (cf Einstein, Margenau, Ballentine
[15, 28]) is that we consider ensembles of classical fields, instead of ensembles of particles.

Our approach might be called pre-quantum classical statistical field theory (PCSFT).
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9.2. Comparison with the views of Schrödinger

Our views are close to the Schrödinger’s original views about the wavefunction as a classical
scalar field as well as his later ideas to exclude totally particles from quantum mechanics, see
[65]. However, the latter program was performed in the QFT framework. In PCSFT we do
not consider quantized fields.

9.3. Comparing PCSFT with Bohmian mechanics

The main difference between PCSFT and the Bohmian model is that the Bohmian model still
contains particles as real objects. In particular, quantum randomness is due to the randomness
of initial states of particles and not randomness of initial states of fields as in PCSFT. But,
of course, the presence of a field element, namely the pilot wave, induces some similarities
between Bohmian mechanics and PCSFT.

9.4. Comparing PCSFT with stochastic quantum mechanics/SED

The comparison here is very similar to that with Bohmian mechanics: particles are real
elements of SED, but not of PCSFT. In SED, quantum randomness is the result of interaction
of particles with random media (‘fluctuations of vacuum’). In PCSFT particles themselves are
images of fluctuating fields. So the crucial point is not the presence of fluctuations of vacuum,
but that behind ‘quantum particles’ there are classical fields. We discuss the interpretation of
the background field in PCSFT in the next paragraph.

In PCSFT the zero point field is interpreted in the following way. The real field of
vacuum, ω = 0, has zero energy, because for any quadratic form H(ω) = (Hω,ω), where
H is a self-adjoint operator, we have H(0) = 0. Nevertheless, we have an analogue of the
zero point field in PCSFT. As was pointed out QM is not complete theory, because there exist
(at least in the mathematical model) statistical Gaussian states representing fluctuations of the
vacuum field with the statistical deviation σ(ρ) = o(

√
h). Such statistical states are neglected

in the modern observational model, QM, in that only states with σ(ρ) = √
h are taken into

account. But statistical states which we neglect in QM have nonzero average of energy:

〈H〉ρ =
∫

H

(Hω,ω) dρ(ω).

Of course, this average is negligibly small,

|〈H〉ρ | � ‖H‖
∫

H

‖ω‖2 dρ(ω) = ‖H‖σ 2(ρ) = o(h)

(we considered the case of continuous operator H : H → H). We can say that PCFT supports
the zero point field model.

Acknowledgments

I would like to thank A Aspect, L Accardi, L Ballentine, G W Mackey, E Nelsson, S Albeverio,
D Greenberger, S Gudder, G ‘t Hooft, Th Nieuwenhuizen, A Leggett, P Lahti, A Peres,
A S Holevo, H Atmanspacher, K Hess, W Philipp, D Mermin, for fruitful discussions on
foundations of QM.



A pre-quantum classical statistical model with infinite-dimensional phase space 9069

Appendix A

A.1. On the von Neumann postulate about correspondence between sums

We consider on the space of self-adjoint operators Ls(H) the weak topology: An → A iff
(Anx, y) → (Ax, y) for any x, y ∈ H ; and on the functional space Vquad(H) the pointwise
convergence. We remark that the space Ls(H) is sequentially complete in the weak topology.
Thus any series

∑∞
n=1 An,An ∈ Ls(H), which converges in the weak topology determines a

continuous operator. Therefore any pointwise convergent series
∑∞

n=1 fn(x), fn ∈ Vquad(H),

determines a continuous quadratic form:

f (x) =
∞∑

n=1

fn(x) = 1

2

( ∞∑
n=1

f ′′
n (0)x, x

)
.

This equality implies

Proposition A.1. The correspondence map T : Vquad(H) → Ls(H) (given by (18)) is
continuous; for any pointwise converging series of variables f (x) = ∑∞

n=1 fn(x), fn(x) ∈
Vquad(H) we have

T

( ∞∑
n=1

fn

)
=

∞∑
n=1

T (fn).

A.2. Finite-dimensional QM as an image of CSM

Let us consider our classical statistical model in the finite-dimensional case. We introduce
a new parameter hclass which has macroscopic dimension, but it is considered as a small
parameter by some ‘super-observer’. We consider the classical statistical model

Mhclass
a (Rn) = (

S
hclass
G (Rn),V(Rn)

)
.

This is a special model of classical statistical mechanics (CMS)15.
Let us now consider a variant of QM in that the state space is finite dimensional. As we

consider in this paper only real numbers, we have the model Nquant(Rn) = (D(Rn),Ls(Rn)).
By using the Maclaurin expansion we can establish the T-correspondence between the models
Mhclass

a (Rn) and Nquant(Rn) and obtain the following fundamental equality:

〈f 〉ρ = 〈T (f )〉T (ρ) + o(hclass), hclass → 0. (A.1)

A.3. Extension of the space of statistical states

We have seen that the quantum (observational) statistical model can be considered as the image
of a classical (ontic) statistical model. In our classical model, the space of statistical states
consists of Gaussian distributions having zero mean value and dispersion σ 2(ρ) = h. Such
states describe Gaussian fluctuations of the state of vacuum, ω = 0. The statistical magnitude
of fluctuations is equal to h. However, in all our considerations it was important that only
the magnitude of fluctuations is approximately equal to h. Therefore we can essentially

15 The conventional model for CSM is given by

M = (PM(Rn), C∞
b (Rn)).

Here the space of statistical states coincides with the space of all probability measures and the space of physical
variables consists of smooth bounded functions.
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extend the class of Gaussian classical statistical states and still obtain the same set of quantum
states D(H). Of course, for such a model the correspondence between classical and quantum
statistical states would not be one-to-one. Let us consider the space of Gaussian measures on
H having zero mean value and dispersion

σ 2(ρ) = h + o(h), h → 0. (A.2)

Denote it by the symbol S≈h
G (H). We consider the following correspondence map between

classical and quantum statistical states extending the map (32):

T : S≈h
G (H) → D(H), T (ρ) = cov ρ

σ 2(ρ)
. (A.3)

We see that the operator D = T (ρ) ∈ D(H), so the map T is well defined.

Proposition A.2. For the map T defined by (A.3) the asymptotic equality of classical and
quantum averages (31) holds for any variable f ∈ V(H).

Proof. We have 〈f 〉ρB
= ∫

H
f (x) dρB(x) = ∫

H
f (σ(ρB)y) dρD(y) = h+o(h)

2

∫
H

(f ′′(0)y, y)

dρD(y) + o(h). So we obtained the asymptotic equality (31). �

As was pointed out, two different Gaussian measures ρ1, ρ2 ∈ S≈h
G (H) can be mapped to

the same density operator D. If the condition

σ 2(ρ1) − σ 2(ρ2) = o(h), h → 0, (A.4)

holds, then T (ρ1) = T (ρ2).

A.4. Non-Gaussian classical statistical states

Our choice of Gaussian statistical states is based on the central limit theorem for H-valued
independent random variables (independent random fluctuations of vacuum). However, in
principle, we could not exclude the possibility that in nature there may exist stable non-
Gaussian statistical states. We recall that the formula (14) giving the trace expression of
integrals of quadratic forms is valid for arbitrary measure µ on H having zero mean value and
the finite second moment:

σ 2(µ) =
∫

H

‖x‖2 dµ(x) < ∞.

Denote the set of such probability measures by symbol PM2(H). Let us consider the classical
statistical model

Mh
a,2 = (

PMh
2 (H), V2(H)

)
,

where PMh
2 (H) consists of µ ∈ PM2(H) having the dispersion σ 2(µ) = h and the space of

variables V2(H) consists of real analytic functions f : H → R, f (0) = 0, having quadratic
growth for x → ∞:

|f (x)| � c1 + c2‖x‖2, x ∈ H, c1, c2 > 0.

We find the average of f ∈ V2(H) with respect to µ ∈ PMh
2 (H):

〈f 〉µ =
∫

H

f (x) dµ(x) =
∫

H

f (σ(µ)y) dν(y)

= σ 2(µ)

2

∫
H

(f ′′(0)(y, y) dν(x) +
∞∑

n=2

σ 2(µ)

(2n)!

∫
H

f (2n)(0)(y, . . . , y) dν(x),
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where the measure ν is the scaling of the measure µ induced by the map: y = x
σ(µ)

. We remark
that the covariation operator of the measure ν is obtained as the scaling of the covariation
operator of the measure µ : D = cov ν = cov µ

σ(µ)
.

Thus we again have 〈f 〉µ = h
2

∫
H

(f ′′(0)y, y) dν(x) + o(h) = h
2 Tr cov νf ′′(0) + o(h).

Hence, the quantum model Nquant can be considered as the image of the classical model
Mh

a,2 and classical and quantum averages are equal asymptotically, h → 0. The map T has
huge degeneration on the space of statistical states, since a covariation operator does not
determine a measure uniquely.

As well as in the Gaussian case, we can consider the space of measures dispersion of
which is only approximately equal h:

PM≈h
2 (H) = {µ ∈ PM2(H) : σ 2(µ) = h + o(h), h → 0}.

The map T can be extended to this class (by increasing degeneration).
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